RATE OF CHANGE

Math 130 - Essentials of Calculus

24 September 2019

Math 130 - Essentials of Calculus

Rate of Change

24 September 2019 1 / 12

э

The process we were taking in the last example is that of a *limit*. We are limiting, in that case, the time increment to 0.

э

The process we were taking in the last example is that of a *limit*. We are limiting, in that case, the time increment to 0. Consider the function

$$f(x)=\frac{x-1}{x^2-1}.$$

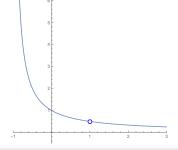
What is happening to the value of f(x) as the value of x is getting closer to 1?

The process we were taking in the last example is that of a *limit*. We are limiting, in that case, the time increment to 0.

Consider the function

$$f(x)=\frac{x-1}{x^2-1}.$$

What is happening to the value of f(x) as the value of x is getting closer to 1?



What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

$$x \quad f(x) \quad x \quad f(x)$$

What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619

What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

X	f(x)	X	$f(\mathbf{x})$
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780

イロト 不得 トイヨト イヨト

What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505

What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505
0.99	0.50251	1.01	0.49751

What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505
0.99	0.50251	1.01	0.49751
0.995	0.50125	1.005	0.49875

What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505
0.99	0.50251	1.01	0.49751
0.995	0.50125	1.005	0.49875
0.999	0.50025	1.001	0.49975

So it appears the values are approaching 0.5. We say $\lim_{x \to 1} \frac{x-1}{x^2-1} = 0.5$.

DEFINITION OF A LIMIT

DEFINITION

We write

$$\lim_{x\to a} f(x) = L$$

and say "the limit of f(x), as x approaches a, equals L" if the values of f(x) approach L as the values of x approach a (but are not equal to a).

< □ > < 同 > < 回 > < 回 >

ESTIMATING A LIMIT

EXAMPLE

Use a table of values to estimate the value of the limit

$$\lim_{h\to 0}\frac{\ln(h+1)}{h}.$$

Math 130 - Essentials of Calculus

Rate of Change

24 September 2019 5 / 12

э

THEOREM (LIMIT LAWS)

Suppose that c is a constant and the limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Then

Math 130 - Essentials of Calculus

THEOREM (LIMIT LAWS)

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

THEOREM (LIMIT LAWS)

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

- $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$

THEOREM (LIMIT LAWS)

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x\to a} [f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x)$$

$$\lim_{x\to a} [cf(x)] = c \lim_{x\to a} f(x)$$

THEOREM (LIMIT LAWS)

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

 $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$

$$\lim_{x\to a} [f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x)$$

- $\lim_{x\to a} [cf(x)] = c \lim_{x\to a} f(x)$
- $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$

THEOREM (LIMIT LAWS)

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x\to a} [f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x)$$

$$\lim_{x\to a} [cf(x)] = c \lim_{x\to a} f(x)$$

Math 130 - Essentials of Calculus

Rate of Change

24 September 2019 6 / 12

THEOREM (LIMIT LAWS)

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ $\lim_{x \to \infty} [f(x) - g(x)] = \lim_{x \to \infty} f(x) - \lim_{x \to \infty} g(x)$ $\lim_{x \to \infty} [Cf(x)] = C \lim_{x \to \infty} f(x)$ $\lim_{x \to a} \left[f(x)g(x) \right] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ $\ \ \, {\displaystyle \lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\displaystyle \lim_{x\to a} f(x)}{\displaystyle \lim_{x\to a} g(x)}, \, provided \, \displaystyle \lim_{x\to a} g(x) \neq 0. } }$ (a) $\lim_{x \to \infty} [f(x)]^n = \left[\lim_{x \to \infty} f(x)\right]^n$ for positive integers n

Rate of Change

Compute the following limits:

Math 130 - Essentials of Calculus

3

Compute the following limits:

- $\lim_{x\to 5} x$
- $\lim_{x \to a} x$

ъ

・ロト ・ 同ト ・ ヨト ・ ヨト

Compute the following limits:

- $\bigcup_{x\to 5} x$
- $\lim_{x\to a} x$
- $\lim_{x\to 5} x^3$

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Compute the following limits:

- $\lim_{x\to 5} x$
- $\lim_{x \to a} x$
- $\lim_{x\to 5} x^3$
- $\lim_{x \to a} x^n$

ъ

・ロト ・ 同ト ・ ヨト ・ ヨト

Compute the following limits:

- $\lim_{x\to 5} x$
- $\lim_{x\to a} x$
- $\lim_{x\to 5} x^3$
- $\lim_{x \to a} x^n$
- $\lim_{x\to -2}(4x^2+x)$

ъ

Compute the following limits:

- $\lim_{x\to 5} x$
- $\lim_{x\to a} x$
- $\lim_{x\to 5} x^3$
- $\lim_{x \to a} x^n$
- $\lim_{x \to -2} (4x^2 + x)$ $3w^2 + 1$

$$\lim_{x\to 5}\frac{3w^2+}{w}$$

Math 130 - Essentials of Calculus

э.

Compute the following limits:

- $\lim_{x\to 5} x$
- $\lim_{x \to a} x$
- $\lim_{x\to 5} x^3$
- $\lim_{x \to a} x^n$
- $\lim_{x \to -2} (4x^2 + x)$

 $\lim_{x\to 5}\frac{3w^2+1}{w}$

$$im_{x\to 2} \frac{x^2 + x - 6}{x - 2}$$

э.

Compute the following limits:

- $\lim_{x \to 5} x$ $\lim_{x \to a} x$ $\lim_{x \to 5} x^{3}$ $\lim_{x \to a} x^{n}$ $\lim_{x \to -2} (4x^{2} + x)$
- $\lim_{x \to 5} \frac{3w^2 + 1}{w}$ • $\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$ Something's not right here...

э

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Before we address what went wrong in that last example, let's come up with a new concept.

э

Before we address what went wrong in that last example, let's come up with a new concept.

DEFINITION (CONTINUOUS)

A function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

Math 130 - Essentials of Calculus

Before we address what went wrong in that last example, let's come up with a new concept.

DEFINITION (CONTINUOUS)

A function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

Intuitively, a function is continuous if you can draw its graph without lifting your pen.

< □ > < 同 > < 回 > < 回 >

Before we address what went wrong in that last example, let's come up with a new concept.

DEFINITION (CONTINUOUS)

A function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

Intuitively, a function is continuous if you can draw its graph without lifting your pen. The function in that last example is one which is *not* continuous.

The following types of functions are continuous <u>on their domains</u>. This means, as long we're taking the limit to a value in the domain of the function, we can just plug the number into the function.

linear functions

・ 同 ト ・ ヨ ト ・ ヨ ト

The following types of functions are continuous <u>on their domains</u>. This means, as long we're taking the limit to a value in the domain of the function, we can just plug the number into the function.

- linear functions
- polynomials

通 ト イ ヨ ト イ ヨ ト

The following types of functions are continuous <u>on their domains</u>. This means, as long we're taking the limit to a value in the domain of the function, we can just plug the number into the function.

- linear functions
- polynomials
- rational functions

The following types of functions are continuous <u>on their domains</u>. This means, as long we're taking the limit to a value in the domain of the function, we can just plug the number into the function.

- linear functions
- polynomials
- rational functions
- power functions

The following types of functions are continuous <u>on their domains</u>. This means, as long we're taking the limit to a value in the domain of the function, we can just plug the number into the function.

- linear functions
- polynomials
- rational functions
- power functions
- root functions

通い イヨン イヨン

The following types of functions are continuous <u>on their domains</u>. This means, as long we're taking the limit to a value in the domain of the function, we can just plug the number into the function.

- linear functions
- polynomials
- rational functions
- power functions
- root functions
- exponential functions

通い イヨン イヨン

The following types of functions are continuous <u>on their domains</u>. This means, as long we're taking the limit to a value in the domain of the function, we can just plug the number into the function.

- linear functions
- polynomials
- rational functions
- power functions
- root functions
- exponential functions
- logarithmic functions

通い イヨン イヨン

USING CONTINUITY TO EVALUATE A LIMIT

EXAMPLE

Consider the function
$$f(x) = \frac{x^2 + x - 6}{x - 2}$$
.

• What is the domain of f?

Math 130 - Essentials of Calculus

э

(a)

USING CONTINUITY TO EVALUATE A LIMIT

EXAMPLE

Consider the function $f(x) = \frac{x^2 + x - 6}{x - 2}$.

- What is the domain of f?
- 2 Compute $\lim_{x\to 4} f(x)$.

Math 130 - Essentials of Calculus

Rate of Change

24 September 2019 10 / 12

(I)

USING CONTINUITY TO EVALUATE A LIMIT

EXAMPLE

Consider the function $f(x) = \frac{x^2 + x - 6}{x - 2}$.

- What is the domain of f?
- 2 Compute $\lim_{x\to 4} f(x)$.
- 3 Compute $\lim_{x\to 2} f(x)$.

Math 130 - Essentials of Calculus

< □ > < 同 > < 回 > < 回 >

Now You Try IT!

EXAMPLE

- Consider the function $f(x) = \frac{x^2 2x 3}{x + 1}$.
 - What is the domain of f?
 - 2 Compute $\lim_{x\to 1} f(x)$.
 - 3 Compute $\lim_{x\to -1} f(x)$.

Math 130 - Essentials of Calculus

24 September 2019 11 / 12

э.

More Limits

EXAMPLE

Compute the limit

$$\lim_{x\to 7}\frac{\sqrt{x+2}-3}{x-7}.$$

Math 130 - Essentials of Calculus

э.

More Limits

EXAMPLE

Compute the limit

$$\lim_{x\to 7}\frac{\sqrt{x+2}-3}{x-7}.$$

EXAMPLE

Compute the limit

$$\lim_{x\to 3}\frac{\sqrt{x+1}-2}{x-3}.$$

Math 130 - Essentials of Calculus

Rate of Change

24 September 2019 12 / 12

э.

More Limits

EXAMPLE

Compute the limit

$$\lim_{x\to 7}\frac{\sqrt{x+2}-3}{x-7}.$$

EXAMPLE

Compute the limit

$$\lim_{x\to 3}\frac{\sqrt{x+1}-2}{x-3}.$$

EXAMPLE

Compute the limit

Math 130 - Essentials of Calculus

Rate of Change